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This paper discusses a potential-vorticity-conserving approach to modelling nonlinear
internal gravity waves in a rotating Boussinesq fluid. The focus of the work is on the
pseudo-plane motion (motion in the x, z-plane), for which we present a broad range
of numerical results. In this case there are two material coordinates, the density and
the y-component of the velocity in the inertial frame of reference, which are related
to the x and z displacements of fluid particles relative to a reference configuration.
The amount of potential vorticity within a fluid region bounded by isosurfaces of
these material coordinates is proportional to the area within this region, and is
therefore conserved as well. Two new potentials, defined in terms of the displacements
and combining the vorticity and density fields, are introduced as new dependent
variables. These potentials entirely govern the dynamics of internal gravity waves
for the linearized system when the basic state has uniform potential vorticity. The
final system of equations consists of three prognostic equations (for the potential
vorticity and the Laplacians of the two potentials) and one diagnostic equation,
of Monge–Ampère type, for a third potential. This diagnostic equation arises from
the nonlinear definition of potential vorticity. The ellipticity of the Monge–Ampère
equation implies both inertial and static stability. In three dimensions, the three
potentials form a vector, whose (three-dimensional) Laplacian is equal to the vorticity
plus the gradient of the perturbation density.

Numerical simulations are carried out using a novel algorithm which directly evolves
the potential vorticity, in a Lagrangian manner (following fluid particles), without
diffusion. We present results which emphasize the way in which potential vorticity
anomalies modify the characteristics of internal gravity waves, e.g. the propagation of
internal wave packets, including reflection, refraction, and amplification. We also show
how potential vorticity anomalies may generate internal gravity waves, along with
the subsequent ‘geostrophic adjustment’ of the flow to a ‘balanced’ wave-less state.
These examples, and the straightforward extension of the theoretical and numerical
approach to three dimensions, point to a direct and accurate means to elucidate the
role of potential vorticity in internal gravity wave interactions. As such, this approach
may help a better understanding of the observed characteristics of internal gravity
waves in the oceans.

1. Introduction
Internal gravity waves (IGWs) are ubiquitous in the oceans and atmosphere and

have been the subject of extensive research. Since Thomson (1879), this research has
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therefore encompassed many observational, numerical and theoretical studies of the
kinematics, dynamics and thermodynamics of IGWs. This has included the generation,
propagation (including reflection and refraction), interaction, instability, breaking, and
dissipation of IGWs in both rotating and non-rotating (inertial) reference frames.

As research on IGWs has progressed, an increasing number of complex nonlinear
effects have been discovered. That nonlinearity is important has been revealed by
many works. For instance, Holloway (1980, 1982) showed that there are serious
limitations to weak-interaction theory in describing nonlinear interactions between
IGWs. Subsequently, Broutman (1984), Broutman & Young (1986), and Broutman
& Grimshaw (1988) examined the nonlinear interaction between an IGW packet
and an inertial current, and Müller et al. (1986) examined the nonlinear interaction
of several IGWs. More recently, Thorpe (1998) studied the nonlinear reflection of
internal waves from a density discontinuity at the base of the oceanic mixed layer. The
two-dimensional nonlinear instability of IGW packets near critical levels (where the
wave speed equals the local current speed) in the absence of rotation was investigated
by Winters & D’Asaro (1989), and the generation of potential vorticity (PV) by
viscosity and diffusion associated with three-dimensional convective instability of
IGWs, also in the absence of rotation, was studied by Winters & D’Asaro (1994).
Using the two-dimensional Boussinesq equations (again without rotation), Sutherland
(1996, 1999) found that nonlinear effects may significantly modify the transmission of
IGW packets incident upon a reflecting level, where the Doppler-shifted frequency of
the waves is comparable to the background Brunt–Väisälä frequency. These are just
a few of the studies that emphasize the role of nonlinearity in IGW interactions.

Much of the progress in IGW research has stemmed from the fact that simple
plane waves, of any amplitude and wave vector, are solutions of both the linear
and nonlinear incompressible Boussinesq equations, since the nonlinear terms vanish
identically. Furthermore, it turns out that PV, a quantity with a nonlinear dependence
on the velocity field, is not only materially conserved but is also homogeneous in
the case of plane waves. This PV homogeneity, however, does not generally follow
for superposed IGWs, which may or may not have PV anomalies. It may be useful
in fact to distinguish IGWs with and without PV anomalies, as argued by Müller
et al. (1986), since PV anomalies are not wave-like but rather materially conserved
quantities. This leads to an alternative way of studying nonlinear IGW processes in a
rotating stratified fluid; in particular, it permits one to see directly the often hidden
effects of PV anomalies. In other words, the analysis of fluid motion in terms of PV
anomalies can be used in an effective way to study the complexity of nonlinear IGW
processes. The objective of the present work is to introduce a novel, natural approach
for this purpose.

The theoretical basis of our approach is developed in § 2. Here, commencing from
momentum balance and mass conservation, we derive the vorticity equation and
introduce two special material variables in terms of which a material displacement
vector is defined and the material vorticity is explicitly computed. The displacement
variables are used to define two new potentials, useful for the numerical method, which
replace the material variables as dependent fields. The PV balance is then introduced
in terms of these potentials, and the system of equations (three prognostic and
one diagnostic) is completed. Finally, the elliptic-hyperbolic nature of the diagnostic
equation and its relation to inertial and static stability is discussed.

The numerical procedure to solve the equations is described in § 3. The numerical
code is a pseudospectral algorithm similar to that developed for the two-dimensional
shallow-water equations (Dritschel, Polvani & Mohebalhojeh 1999). The material
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conservation of potential vorticity is dealt with explicitly using ‘contour advection’
(Dritschel & Ambaum 1997), and the nonlinear diagnostic equation is solved itera-
tively.

A wide range of numerical results are presented in § 4. These include illustrations of
how PV anomalies modify plane IGW fields, of the interaction between PV anomalies
and IGW packets, and of the generation of IGWs by PV anomalies. The theoretical
basis for the generalization of this approach to three dimensions is described in § 5.
Finally, our conclusions are given in § 6.

2. Theoretical development
2.1. Basic equations

In the following, we will use the subindices p and n to denote the vector component
parallel and normal to the (x, z)-plane, respectively. Cartesian coordinates (x, y, z) are
used throughout the paper. We consider isochoric motion such that, in a reference
frame rotating with constant angular velocity f/2, the velocity field is u = up + un,
where up(x, z, t) = u(x, z, t) ı + w(x, z, t)k, and un(x, z, t) = v(x, z, t). This motion is
referred to as pseudo-plane motion of the second kind (Truesdell & Toupin 1960,
p. 329) because velocities do not depend on the coordinate y yet v 6= 0. If v = 0
the motion is referred to as pseudo-plane motion of the first kind (see Marris 1998).
We denote pressure by p = p(x, z, t), and density by ρ = ρ(x, z, t). In this case the
non-hydrostatic Boussinesq momentum, mass conservation, and the incompressibility
equations are

u̇− fv = −α0 px, (2.1a)

v̇ + fu = 0, (2.1b)

ẇ = −α0pz − α0gρ, (2.1c)

ρ̇+ ρ div u = 0, (2.1d)

div u = 0, (2.1e)

where the initial unknowns are the three-dimensional velocity field (u, v, w), the
pressure p, and the density ρ. Subindices (x, y, z) denote partial derivatives; (̇ ) =
d( )/dt = ( )t + u · grad ( ) denotes the material derivative and the rest of the symbols
have the usual meaning (see table 1). These equations are transformed using the
two-dimensional streamfunction ψ as a new independent field, in terms of which
up = − × ∇ψ.

2.2. Vorticity

The absolute vorticity ωa ≡ curl u + fk = (ξ, η, ζ + f) can be decomposed into two
components: ωa

p ≡ −vzı+ (vx + f)k (parallel to the x, z-plane and hereinafter referred

to as plane vorticity), and ωn ≡ (uz − wx) = η = −∇2ψ (normal to the x, z-plane).
Note that the absolute plane vorticity depends only on the spatial gradients of v and
on the planetary vorticity f. The curl of the absolute acceleration aa = u̇+fk×u+∇φc
(where φc is the potential for the centripetal acceleration)

curl aa = curl aap = α0gρx = (curl aa)n, (2.2)

is generally non-zero, the motion is not circulation-preserving; however, since its plane
component is zero ((curl aa)p = 0), some of the distinctive features of circulation-
preserving motions can be applied to the (x, z)-plane. With respect to a non-rotating
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Symbol Description

up(x, z, t) = (u, w) two-dimensional velocity

ρ(x, z, t) mass density field

ρ0 averaged mass density

α0 ≡ ρ−1
0 specific volume (constant)

ρ′(z) = ρ′zz + ρ0 ambient density (linear)

N2 ≡ −α0 gρ
′
z square of the background

Brunt–Väisälä frequency (constant)

p pressure

g acceleration due to gravity

f Coriolis parameter (constant)

σ ≡ −α0 g(ρ− ρ′) buoyancy

X ≡ f−1v + x x-coordinate of the y-momentum
isosurface in the reference configuration

Z ≡ N−2σ + z isopycnal height in the reference configuration

X = (X,Y,Z) ≡ X − x displacement vector (dual)

∇ = ı∂/∂x+ k∂/∂z two-dimensional gradient operator

grad, div, curl three-dimensional operators

Grad three-dimensional gradient in the material description

∇Xp two-dimensional displacement gradient (dual)

ϕp ≡ (ϕ, φ)

Ap = (A,C) ≡ ∇2ϕp

T ≡ up( × ϕp)

ω ≡ curl u = (ξ, η, ζ) relative vorticity

Table 1. Description of symbols used.

frame (f = 0), the plane and perpendicular components of the vorticity equation
(ω̇ − ω · grad u = curl a) satisfy the relations

(ω̇)p = ωp · grad u, (ω̇)n = α0gρx. (2.3a, b)

Equation (2.3a) states the conservation of the plane material vorticity following fluid
particles (as we will explicitly prove below). In the rotating reference frame, (2.3b)
can be written in terms of the y-component of the relative vorticity η = −∇2ψ as

η̇ = fvz − σx. (2.4)

2.3. Material variables

The velocity component v and the buoyancy σ evolve according to

d(v + fx)/dt = 0, d(σ +N2z)/dt = 0, (2.5a, b)

respectively. The first equation expresses conservation of the y-component of the
absolute velocity (i.e. the component along the y-axis rotating with frequency f with
respect to an inertial frame) when the total force in the y-direction is zero (the
centrifugal acceleration being omitted). The second equation is just an equivalent way
of rewriting the conservation of mass density since σ(x, z) +N2z = −α0g[ρ(x, z)−ρ0].
Note that the background Brunt–Väisälä frequency N is constant.
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At this point, it is convenient to introduce the following fields:

X(x, z, t) ≡ x+X(x, z, t), Z(x, z, t) ≡ z +Z(x, z, t), (2.6a, b)

where

X ≡ f−1v, Z ≡ N−2σ. (2.7a, b)

The field X(x, z, t) assigns to the isoline of absolute y-velocity located at (x, z, t) a
number that corresponds to the x-distance (from the origin x = 0) that that isoline
has in the reference configuration where v = 0. Likewise, the field Z(x, z, t) assigns to
the isopycnal located at (x, z, t) a number that corresponds to the z-distance (from the
origin z = 0) that that isoline has in a reference configuration where σ = 0. These field
transformations do not result in any approximation of the original equations (2.1b,
c, d,); instead, they are just a way of considering the conserved absolute y-velocity
and density (note that Z = (ρ− ρ0)/ρ

′
z) of every fluid particle in terms of its location

(distance) from the ‘unperturbed’ reference configuration, in which X = 0 (v = 0)
and Z = 0 (σ = 0). This reference configuration need not be the configuration of the
system at any specific time, and we will see that for some initial conditions, it is never
an actual system configuration.

Only for completeness we introduce Y (x, y, z, t) = y + Y(x, z, t), the y-coordinate
in the reference configuration of the fluid particle located on (x, y, z) at time t. Thus,
by definition, Ẏ = 0, and Ẏ = −ẏ = −v. The fields −X(x, z, t) ≡ x − X(x, z, t),
−Y(x, y, z, t) ≡ y − Y (x, z, t), and −Z(x, z, t) ≡ z − Z(x, z, t), represent the x-, y- and
z-distance of the respective isoline at (x, y, z) (of absolute y-velocity and density) from
its position in the reference configuration. The vector −X ≡ −(X,Y,Z) is called the
displacement vector, and X its dual (Truesdell & Toupin 1960, § 19). Its components
may be thought of as displacements from the reference configuration, keeping in
mind that the reference configuration need not be realizable. In terms of X, and Z ,
the two conservation equations for v and ρ are simply

Ẋ = 0, Ż = 0. (2.8)

Thus the fields X ≡ (X,Y , Z) may be considered as material variables of the fluid.
In the reference configuration, isosurfaces of these variables are planes. The X-field
becomes, furthermore, the streamfunction of the dimensionless absolute vorticity in
the (x, z)-plane, f−1ωa

p,

f−1ωa
p = − × ∇X = (gradX × gradY )p. (2.9)

X-isolines are therefore the vector lines of the absolute plane vorticity ωa
p, or ωa

p-lines.
The above representation of the plane absolute vorticity as the plane component of
the cross-product of the gradient of two conserved quantities is shown below to be
relevant to potential vorticity conservation.

2.4. Material vorticity

Let us define the deformation gradient F ≡ Grad x; then

F−1 ≡ gradX = (Xx +1)ıI +YxıJ +ZxıK+ J +XzkI +YzkJ +(Zz +1)kK , (2.10)

and the Jacobian of the deformation gradient is

 ≡ |gradX | = Jxz(X,Z) = 1 +Xx +Zz +XxZz −XzZx. (2.11)

Recall that J ≡ |Grad x| = −1. In the (x, z)-plane,

F−1
p ≡ ∇X = (Xx + 1)ıI +ZxıK +XzkI + (Zz + 1)kK , (2.12)



80 A. Viúdez and D. G. Dritschel

and p ≡ |∇X | = . Beltrami’s three-dimensional material vorticity (see e.g. Casey &
Naghdi 1991) is defined by ω◦ ≡ JF−T · ω (where F−T ≡ (F T)−1), and therefore

ωa◦ = JF−T · ωa = [η + fJxz(X,Y )]JJ + fK = ωa◦
n + ωa◦

p , (2.13)

which is not constant in time since the motion is not circulation-preserving. The
plane material vorticity ωa◦

p ≡ JpF
−T
p · ωa

p = fK is, however, constant in time. This is
essentially equivalent to conservation of potential vorticity, because of the equivalence
between Rossby–Ertel’s PV and Beltrami’s vorticity (Viúdez 2001). This is a special
case of Cauchy’s vorticity formula for circulation-preserving motion: ω◦ = ω◦(t = 0).

2.5. Potentials

In order to solve the system of equations it is convenient to replace X and Z (or v
and σ) by two new potentials ϕp ≡ (ϕ, φ) defined by the relations

[tr (− × ∇ϕp), tr (∇ϕp)] = (−ϕz + φx, ϕx + φz) = (X,Z) =Xp (2.14)

which imply

Ap ≡ (A,C) ≡ ∇2ϕp = (∇2ϕ,∇2φ)

= (−Xz +Zx,Xx +Zz) = [tr (− × ∇Xp), tr (∇Xp)]. (2.15)

Note that ϕ and φ have dimensions of L2, and therefore C and A are dimensionless,
while the displacements X and Z have dimensions of L. In order to obtain dynamical
equations for A and C we need their material time derivatives which, with the help
of the relations

Ẋx = −Jxz(w,X+ x), Ẋz = Jxz(u,X+ x),

Żx = −Jxz(w,Z+ z), Żz = Jxz(u,Z+ z)

(where Ẋx = dXx/dt, etc.) are

Ȧ = η − Jxz(u,X)− Jxz(w,Z), Ċ = Jxz(u,Z)− Jxz(w,X). (2.16a, b)

Note that Jxz(u,X) + Jxz(w,Z) = ∇ · (upxZ − upzX) and therefore the local rate of
change of A can be written as At = η − ∇ · (∇ · T ), where the tensor T ≡ up( × ϕp).

2.6. Potential vorticity

In order to introduce a framework where PV conservation can be explicitly considered,
it is necessary to adopt the rate of change of PV as an independent equation in place
of one of the other independent rates of change (Ȧ, η̇ or Ċ). First let us define the
dimensionless potential vorticity Π and PV anomaly $ densities as

Π ≡ f−1ωa · gradZ, $ ≡ Π − 1, (2.17a, b)

which, because of (2.9) and (2.15), can be written as

Π = (gradX × gradY ) · gradZ = J(X,Y , Z) = Jxz(X,Z) = , (2.18a)

$ = ∇2φ+ Jxz(X,Z). (2.18b)

The PV density can be written as the three-dimensional Jacobian of three con-
served quantities (or equivalently, as the two-dimensional Jacobian of two conserved
quantities) because of the representation of the plane absolute vorticity (2.9) and the
independence of Z from y. When these quantities are adopted as material coordinates
the demonstration of PV conservation is immediate since it becomes the Eulerian
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continuity equation (which is an identity) d/dt+  div u = 0 (see e.g. Truesdell 1954,
§ 24). In this case the amount of PV in a volume bounded by isosurfaces of X, Y and
Z , can be interpreted as the volume in the material space (which is always constant
since particles are fixed) bounded by these isosurfaces. Since we are considering iso-
choric motion the volume in the spatial representation of that fluid element cannot
change (div u = 0), and thus the PV density in this case obeys the same type of
conservation law ($̇ = 0) as for specific PV (d(α$)/dt = 0, where α ≡ ρ−1 is the
specific volume). Volume conservation is however not required for the conservation
of PV. An easy way of deriving the PV density using the material coordinates X is to
employ the material expression of PV density (see e.g. Viúdez 1999) which in this case
is Π = f−1 ω◦ ·GradZ = f−1 ω◦ ·K = . In terms of PV the reference configuration
is characterized by having zero PV density anomaly $ = 0 (or constant PV density
Π = 1). The amount of PV (an extensive quantity) within a fluid element bounded
by the isosurfaces X = X1, X2, Y = Y1, Y2, and Z = Z1, Z2, is simply

Q ≡
∫
v

Π dv =

∫
v

 dv =

∫
V

dV = (X2 −X1)(Y2 − Y1)(Z2 − Z1). (2.19)

Thus spatial variations in the PV field show up as differences in the area (in the
x, z-plane) enclosed by contours (with a constant contour interval) of X and Z . We
provide a simple example of this in § 4.

2.7. The final set of equations

Given the relationship $ = C+Jxz(X,Z) in (2.18b), a natural choice is to use the rate
of change of $ instead of the rate of change of C. Thus, the variables (u, v, w, and σ)
are replaced by the potentials ϕ and φ, streamfunction ψ, and dimensionless potential
vorticity anomaly $ , satisfying three prognostic and one diagnostic equations:

ηt = (f2 −N2)φxz −N2ϕxx − f2ϕzz − ∇ · (uη), (2.20a)

At = η − ∇ · (∇ · T ), (2.20b)

$̇ = 0, (2.20c)

$ = ∇2φ+ Jxz(X,Z), (2.20d)

with T , u, η, A, X, and Z, written in terms of ϕ, ψ, and φ. The elliptic-hyperbolic
nature of (2.20d ) and its relation to inertial and convective stability are described
below.

2.8. Stability and the Monge–Ampère equation (2.20d).

For given ϕ and $ equation (2.20d ) can be written as

(φxxφzz − φ2
xz) + (1 + ϕxz)φxx + (1− ϕxz)φzz + (ϕzz − ϕxx)φxz

+ (ϕxxϕzz − ϕ2
xz − $) = 0, (2.21)

which is a particular case of the Monge–Ampère equation E(φxxφzz − φ2
xz) + Aφxx +

2Bφxz + Cφzz + D = 0, where the coefficients A, B, C , D, and E, are continuous
functions of x and z, and in our case

E = 1, A = 1 + ϕxz, B = (ϕzz − ϕxx)/2, (2.22a,b,c)

C = 1− ϕxz, D = ϕxxϕzz − ϕ2
xz − $. (2.22d,e)

Rellich’s Theorem (see e.g. Courant & Hilbert 1962, p. 324) states that if R ≡
AC−B2−DE > 0 there exists at most two solutions to the Monge–Ampère equation
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which assume the same boundary values. In the case (2.21) we have

R = 1 + $ − (A/2)2. (2.23)

Furthermore, since R can also be written as

R = (φxx + 1− ϕxz)(φzz + 1 + ϕxz)− [φxz − (ϕzz − ϕxx)/2]2, (2.24)

one of the two possible solutions (with R > 0) must satisfy

φxx + 1− ϕxz > 0⇒ Xx + 1 > 0 (fvx + f2 > 0),

φzz + 1 + ϕxz > 0⇒Zz + 1 > 0 (σz +N2 > 0),

which is both inertially and statically stable. The other solution satisfies φxx+1−ϕxz <
0 and φzz + 1 + ϕxz < 0, and therefore is both inertially and statically unstable. For
plane internal waves the amplitudes of η and A are related by A0 = η0/ω, where ω
is the intrinsic frequency of internal waves given by ω2 = (f2m2 + N2k2)/(k2 + m2),
and therefore R > 0 implies η0 < 2|ω|.

The numerical procedure to solve this Monge–Ampère equation and the other
equations in (2.20) is described in the next section.

3. The numerical algorithm
The numerical code closely parallels that developed for the two-dimensional

shallow-water equations (Dritschel et al., hereafter referred to as DPM). The ma-
terial conservation of potential vorticity (2.20c) is dealt with explicitly using ‘contour
advection’ (Dritschel & Ambaum 1997, hereafter referred to as DA), in which the fluid
particles X$ representing contours (isolevels) of $ are simply advected using the local
fluid velocity up(xp, t), where xp = (x, z). That is, one solves ∂xp(X$, t)/∂t = up(xp, t)
for all the points X$ on all the $-contours. Note that $-contours X$ for a given PV
jump and the contours of X are both material lines. There is no explicit reference to
the grid here, and as a result, there are no numerical stability constraints for the time
integration scheme (here, we use the third-order Adams–Bashforth scheme described
in DPM). The time step only affects the accuracy of advection. High accuracy is
achieved as long as the product of the local strain |grad up| and the time step ∆t is
small compared to unity.

The velocity at any point xp is found by bilinear interpolation of the gridded
velocity field up, as in DPM. The high accuracy of this interpolation is demonstrated
in DA. In particular, there are no diffusive effects.

For general continuous distributions of $ , a finite number of contours are used.
Between each contour, $ is uniform, and so the contours correspond to discontinuities
in $ . This discrete representation, even for a modest number of contours, can closely
approximate a continuous distribution, as shown in Legras & Dritschel (1993) and
in DPM. In turn, each contour is represented by a finite number of points, or nodes,
whose number changes in time according to the complexity of the contour.

Contour complexity is limited by ‘surgery’ (Dritschel 1989), which joins together
contours or breaks them apart when contours, or parts of the same contour, become
closer than a prescribed distance, δ. DA recommend setting δ to be a tenth of the
basic grid scale. Here we choose δ to be a factor 0.2/mg times the geometric mean
grid scale, (∆x∆z)1/2, since the grid is typically anisotropic (∆z � ∆x). The parameter
mg is the fine/coarse grid ratio, usually 2 or 4 (the latter being used in this work).
The fine grid is used in the PV contour-to-grid conversion, then successive 1-2-1
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averages are performed to generate the PV on the coarse grid used to represent the
other dynamic variables. Note that, in the current application to stable wave motions,
PV contours tend to oscillate relative to their initial configuration without exhibiting
severe deformation, so surgery does not act. Surgery may act however when the waves
become unstable (as reported in § 4.4). Other details of the point distribution and
redistribution are the same as given in DA and DPM.

The system’s evolution also depends on the two variables η andA. Their evolution
is computed using a standard pseudospectral technique, wherein nonlinear products
are carried out on the grid (in physical space) while derivatives and other linear
operations are carried out in spectral space, using fast Fourier transforms to convert
the fields from one representation to the other. The time integration is carried out
using an explicit leap-frog scheme with a time step strongly satisfying the CFL
constraint on numerical stability. To avoid the desynchronization of the even and odd
time levels, we use the Robert–Asselin time filter, with coefficient 0.05, as in DPM.

The potential vorticity $ couples with the evolution of η and A only through the
term (N2 − f2)φxz on the right-hand side of (2.20a). This term forces one to solve a
nonlinear diagnostic equation (2.20b) for φ. This is done as follows. The field of $
is first recovered on the grid by the fast contour-to-grid conversion scheme described
in DA. In fact, it is found on a grid four times finer in each direction than the basic
grid, then averaged back to the original grid as described in DA (the factor of four
was also used in DPM). Then, the gridded field of $ is transformed to spectral space,
where it is used in the following iteration (the gridded fields of ϕx and ϕz are also
found in advance of the iteration). Starting from a time-extrapolated guess for φ,
each step of the iteration consists of (1) computing φx and φz , (2) adding these to
−ϕz and ϕx, (3) computing the x- and z-derivatives of these sums, (4) computing the
Jacobian term and its spectral transform, and finally (5) finding the next guess for φ
from the (spectral) inversion of ∇2 on π − J(X,Z). This iteration converges rapidly
(one or two iterations) except when contours of X or Z are close to overturning.
Even then, the scheme may converge, but usually the flow becomes highly complex
soon thereafter and convergence becomes impossible. This is further discussed in the
context of specific examples in the following section.

While developing this numerical method, it became clear that some form of high-
wavenumber filtering is required for the convergence of the diagnostic equation for
φ and, consequently, for the numerically stable evolution of η and A. Moreover, it is
necessary to use x and z grid scales consistent with the values of f and N, specifically:
∆z/∆x = O(f/N). We have found that choosing ∆z/∆x = 1 leads to the growth of
grid-scale noise, principally in the iteration scheme used to find φ. Filtering slows this
growth but cannot stop it. Remarkably, even explicit viscous diffusion cannot stop
it. The only practical solution is to choose ∆z/∆x = O(f/N), and apply filtering to
prevent the generation of two-grid interval noise.

We have applied the filter used by Broutman et al. (1997), which has the form
F(k) = exp(−Ckr), where k is the x- or z-wavenumber, r = 10, and C is chosen so
that F = 10−14, or machine precision, at the maximum wavenumber kmax. This filter
multiplies all x- and z-wavenumbers used in computing spectral derivatives. Laplace’s
operator however uses the unfiltered wavenumbers, since only its inverse is used (e.g.
in the iteration to find φ and in computing the streamfunction ψ from η).

4. Numerical results
In this section we illustrate the numerical solutions of equations (2.20) for a range

of cases involving different initial fields of vorticity, potential vorticity andA. First, as
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(a) (b) (c)

Figure 1. Initial contours of Z (a), X (b), and Z and X superimposed (c, with Z alternated light
grey and white, and X alternated dark grey and white), for the plane wave case k = 2, m = −2. The
graphical display of the contours has been discretized to show the 256× 256 grid resolution.

a simple example, we consider plane waves with no PV anomaly. Next, we introduce
a PV anomaly into the plane wave field and describe how this induces changes in
the density and vorticity of the wave motion, specifically through the generation and
propagation of vorticity wave packets and small-scale disturbances. Afterwards, we
study the interaction between a vorticity wave packet and a PV anomaly and describe
various refraction and reflection phenomena. Finally, we consider the generation of
internal waves by PV anomalies.

In the following, all quantities are made dimensionless by choosing the Brunt–
Väisälä period to be the unit of time (so that N = 2π), and the x-width of the domain
to be Lx = 2π.

4.1. Plane wave solutions

As an illustrative example of the concepts developed in the previous section, and as
a test for the numerical solution method as well, it is worth considering plane wave
solutions. In this case the nonlinear terms in the equations vanish and the solutions
take the form g̃ = g̃0 ei(kx+mz−ωt) which, in terms of the complex vertical displacement
−Z̃, are

σ̃ = N2Z̃, ũ = −iωmk−1Z̃, ṽ = −fmk−1Z̃,
w̃ = iωZ̃, η̃ = −ω(k2 + m2)k−1Z̃, X̃ = −mk−1Z̃,

}
(4.1)

where the intrinsic frequency ω satisfies

ω2 = (f2m2 +N2k2)/(k2 + m2). (4.2)

In this case the PV density Π = 1 everywhere ($ = 0) and the initial conditions for
η and A are the real parts of η̃ and Ã = −iη̃/ω. We choose a plane wave with
high convective and inertial instability by setting k = 2, m = −2, frequency ratio
N/f = 50 (so that ω = 4.4), and vorticity amplitude η0 = 12, in order to produce
large horizontal and vertical displacements (X0 = Z0 = 0.68). The time step used is
∆t = 0.001 in a 256× 256 grid (in this case of equal x and z dimensions).

The initial contours ofX and Z are shown in figure 1. Both X- and Z-contours move
without deformation (X-contours to the right and Z-contours downwards), while the
intersecting points are the plane projection (in the x, z-plane) of the positions of
fluid particles. The area in physical space bounded by constant X- and Z-contours



Internal gravity waves conserving potential vorticity 85

(a) (b)

3

2

1

0

–1

–2

–3
0.0 0.4 0.8 –10 010 15 –4 –2 2 4

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
0

PV σ –Z

Figure 2. Relative vorticity η(z, t), as a function of z and time t (at x = 0), for an initial plane wave in
the presence of a tent PV profile (ribbon width h = 2) with ∆$ = 0.4 (a, (ηmin, ηmax) = (−0.14, 0.14))
and ∆$ = 0.8 (b, (ηmin, ηmax) = (−0.21, 0.20)). Solid fill interval ∆ = (ηmax− ηmin)/5, with the darkest
colour being the lowest value. The initial vorticity amplitude η0 = 0.1, k = 1, m = −16, N/f = 50,
∆t = 0.01 on a 16 × 256 grid. The vertical axis is z ∈ [−π, π], and the horizontal axis is time
t ∈ [0, 100] (2 inertial periods). The initial tent PV profile $(z), density disturbance σ(z), and
−Z(z) = α0gN

−2[ρ(z)− ρ0], for the case ∆$ = 0.8, are also shown.

(represented by the colour changes in the greyscale image) is always equal to ∆X ∆Z
(where ∆X ≡ X2 −X1 and ∆Z ≡ Z2 − Z1 are the contour intervals), that is, the area
only depends on the difference between contour lines and not on the actual value of
the contours. A fluid element may be defined by the four material points (X1, Z1),
(X2, Z1), (X1, Z2), and (X2, Z2). The stretching of this fluid element in one direction
(say, x) is exactly balanced by its compression in the other direction (say, z), in such
a way that the area ∆X ∆Z remains constant in time, which is an expression of the
conservation of PV. This example is illustrative because exactly the same happens in
more complicated fluid configurations, the only difference being that, when the PV
anomaly $ is different from zero, the area associated with, say, pairs of contours
(X1, X1 + ∆X0) and (Z2, Z2 + ∆Z0) depends on the contours X1 and Z1 (that is, is not
spatially constant), though the area of every fluid element remains constant in time.

For plane waves with zero PV anomaly, the potential φ = 0. Numerically, however,
(2.20d ) has to be solved, and φ becomes, though smaller than the convergence crite-
rion, different from zero. The highly unstable flow described above was a numerical
solution for at least 10 buoyancy periods (104 time steps). During that time the
maximum and minimum deviations (in the entire domain) of the numerical solutions
with respect to the theoretical exact values (σ0, u0, v0, w0, η0) increased linearly at a
rate of 0.06% per buoyancy period.

4.2. Plane wave field in the presence of PV anomalies.

In order to simulate the behaviour of internal waves in the presence of PV anomalies,
an initial vorticity plane wave field η̃ = η̃0e

i(kx+mz) is superposed on a horizontal
ribbon of anomalous PV. Forty PV layers are used in the ribbon for the examples in
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this subsection. Note that, neglecting the internal wave contributions, the vertical PV
anomaly profile is related to the buoyancy by $(z) = N−2σz .

The PV anomaly is prescribed by a tent profile (cf. figure 2) with a positive PV
jump ∆$ ≡ $e − $b = 0.8, where $b is the background PV anomaly (outside the
ribbon), and $e is the PV anomaly extremum (maximum or minimum) within the PV
profile. In order for $(z) to have a zero vertical mean, the PV anomaly outside the
ribbon must be $b = −h∆$/(2Lz) = −0.8/(2π) ≈ −0.13, where h = 2 is the width of
the ribbon and Lz = 2π is the z-width, or height, of the domain. Since $b is negative
σ(z) decreases with z outside the ribbon. This $ profile therefore weakens the vertical
stratification outside the ribbon when ∆$ is positive, and strengthens it when ∆$ is
negative. Since the stratification vanishes when N2σz + 1 = 0 the initial density profile
outside the ribbon is neutral when $b = N2σz = −1, which implies an upper limit for
the PV jump, ∆$ = 2Lz/h = 2π, within the tent profile.

The evolution of the flow (figure 2) is noticeably different from the previous
example for uniform PV. First, the vorticity amplitude varies spatially, and moreover,
the speed of wave propagation is altered. In the case of weak to moderate amplitude
PV disturbances, ∆$ = 0.4 (figure 2a), wave crests initially entering the PV ribbon
from the top (such waves have a negative phase speed) accelerate downwards as they
encounter a region of larger vertical stratification (their vertical phase speed decreases
since ∂η/∂z is larger in the upper part of the ribbon, z ∈ [0, 1]). Waves arriving in
the lower part of the ribbon, on the contrary, decelerate as the vertical stratification
weakens (their negative vertical phase speed increases since contours of equal phase
become more horizontal). Consequently, wave ridges and troughs tend to spread
apart at the upper end of the PV ribbon (where they are faster), and concentrate at
the lower end (where they are slower). This can be verified by counting the crests at
the beginning and ending time within the ribbon; there are 5 initially and 6 at the
end in the case ∆$ = 0.8.

The generation and upward propagation of wave packets having a larger vorticity
amplitude take place in the ridges of the contours of equal phase, meaning that the
vorticity amplitude increases when the vertical phase speed increases with time in
the wave. Similarly, the vorticity amplitude decreases when the vertical phase speed
decreases. The maximum vorticity amplitude max(|η(x, z, t)|) = 0.14, is 1.4 times the
initial vorticity of the plane wave. While the changes in phase speed and wavenumber
are transmitted upwards in the form of a wave packet leaving the PV ribbon,
small wave disturbances, related to the oscillations of the discrete PV contours, are
transmitted downwards along lines of constant phase. Qualitatively similar effects,
but with larger amplitudes, result for larger PV anomalies, such as shown for $ = 0.8
in figure 2(b). In this case, the maximum vorticity amplitude max(|η(x, z, t)|) = 0.32 is
more than three times the initial vorticity of the plane wave.

These effects may be more clearly observed by examining the difference in the
vorticity fields between the cases with and without the PV ribbon (figure 4). A
wave packet is generated over the PV ribbon and has a slightly different orientation
(or propagation direction) than the original plane wave. This causes destructive or
constructive interference, and both occur in each case (notice the darker troughs to
the left of the main region of weakened amplitudes in figure 2) but particularly in
case (b) for a stronger anomaly. The same happens in figure 3, and the observed
differences between the two figures is a result of the difference in the sign of the
relative angle of propagation of the wave packet. In figure 2, the wave packet moves
a little to the right of the original plane wave, while in figure 3 it moves a little to the
left of it.
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Figure 3. As in figure 2 but for a negative tent PV profile: ∆$ = −0.4
(a, (ηmin, ηmax) = (−0.18, 0.19)) and ∆$ = −0.8 (b, (ηmin, ηmax) = (−0.28, 0.29)).

(a) (b)

Figure 4. The difference of relative vorticity ∆η(z, t) (at x = 0) between the cases with and
without the PV ribbon. (a) (∆ηmin,∆ηmax) = (−0.25, 0.26) corresponds to the case $ = 0.8 (fig-
ure 2b) and (b) (∆ηmin,∆ηmax) = (−0.33, 0.35) to the case $ = −0.8 (figure 3b). Solid fill interval
∆ = (∆ηmax − ∆ηmin)/5.

Since the vertical phase speed of the initial wave field is negative, qualitative
differences may be expected when the sign of the PV profile is changed. When
$ < 0, σ decreases with height within the ribbon (figure 3) and therefore the vertical
stratification is weaker there. In the case of weak to moderate amplitude PV anomalies,
e.g. ∆$ = −0.4 (figure 3b), the vertical phase speed of the waves entering the PV
ribbon from the top decreases in magnitude while the vertical phase speed of waves
arriving in the lower part of the ribbon increases in magnitude (contours of equal
phase become more vertically oriented). As a consequence wave ridges and troughs
tend to concentrate in the upper half of the PV ribbon and spread apart in the lower
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Figure 5. As in figure 2 but for a PV zigzag profile with ∆$ = 0.4 (a, (ηmin, ηmax) = (−0.23, 0.21));
and ∆$ = 0.8 (b, (ηmin, ηmax) = (−0.32, 0.32)).

half. The maximum vorticity amplitude max(|η(x, z, t)|) = 0.21 is two times the initial
vorticity of the plane wave (a larger change in amplitude than was found for a positive
PV anomaly of the same magnitude). As in the case of positive PV anomalies, wave
packets emerge from the upper and lower edges of the ribbon, and larger amplitude
PV anomalies accentuate these effects, cf. the case ∆$ = −0.8 shown on figure 3(b).
In this case, the maximum vorticity amplitude (max(|η(x, z, t)|) = 0.41) becomes four
times larger than the initial vorticity of the plane wave.

Other PV profiles considered produce similar results. For instance, see figures 5
and 6 for the behaviour of plane waves in the presence of a zigzag, or double-tent
PV profile. The zigzag profile has zero mean PV inside the ribbon, and therefore
$b = 0. Though the σ(z)-field in the zigzag profile looks simpler than in the PV tent
profile, its effects on the wave field are more complicated. This is because the density
anomaly both increases and decreases inside the ribbon. One still sees the generation
and upward propagation of wave packets along with the downward propagation of
smaller-scale disturbances. And, again, these phenomena are more pronounced with
increasing PV anomaly; for instance in the case $ = ±0.8 (shown on figures 5b and
6b), the maximum vorticity amplitudes max(|η(x, z, t)|) are 0.32 and 0.39, respectively,
which are about three and four times the initial vorticity of the plane wave.

4.3. Wave packet and PV interaction

The evolution of a vertically confined wave packet is simulated by imposing the initial
field

η = η0 sin(kx+ mz) exp(−z2/L2),

and the A field whose spectral components satisfy the plane wave relations (4.1) for
each spectral component of η. Here L is the vertical length scale of the wave packet.
A vertically and horizontally confined wave packet is simulated in the same way
except η above is multiplied by an additional factor of exp (−x2/L2). The initial wave
packet does not contain any PV.

In the case of no PV anomaly (figure 7a) the wave packet moves upward (the
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Figure 6. As in figure 5 but for an inverse zigzag PV profile: (a) (ηmin, ηmax) = (−0.21, 0.21); and
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Figure 7. Relative vorticity η(z, t), showing the evolution of a wave packet (initial amplitude
η = 0.02, length scale L = 0.4, k = 1, m = −16 and N/f = 50) with no PV anomaly
(a, (ηmin, ηmax) = (−0.021, 0.021)), and in the presence of a tent PV ribbon (b, (ηmin, ηmax) =
(−0.030, 0.031)), ribbon width h = 1.5, ∆$ = 0.8). Note that the breaking amplitude, as deduced
from (4.1), is here ηc = 2.72. Solid fill interval ∆ = (ηmax− ηmin)/9. Integration time is 150 buoyancy
periods (3 inertial periods). The grid size is 16 × 256. The initial profiles of $(z), σ(z), and −Z(z)
are shown on the right.

phases move downward) without varying its direction, and at the same time it
spreads, decreasing its amplitude and increasing its length. The encounter of the wave
packet with a region of anomalous PV can however substantially modify this simple
spreading motion. An upward propagating wave packet encountering a positive PV
anomaly ribbon (figure 7b) exhibits both reflection and refraction. In the positive
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Figure 8. As in figure 7 but for a wave packet with initial amplitude η = 0.4 interacting with a
positive PV ribbon with ∆$ = 0.8 (a, (ηmin, ηmax) = (−0.43, 0.44)), and a negative PV ribbon with
∆$ = −0.8 (b, (ηmin, ηmax) = (−0.44, 0.44)). The initial profiles of $(z), σ(z), and −Z(z) for the
positive (solid line) and negative (dashed line) PV ribbons are shown on the right.

PV case the wave packet increases its magnitude and is decelerated inside the PV
ribbon, where the vertical phase speed decreases (contours become more horizontally
oriented) and the vertical wavenumber increases. When the wave packet encounters
the PV ribbon, a vorticity wave packet is generated and propagates downwards
(reflection).

While deceleration of the wave packet also occurs for larger vorticity amplitudes
(η = 0.4) and large positive PV disturbances ($ = 1.2), acceleration of the wave
packet occurs for negative PV anomalies. Figure 8 allows a comparison of these
two phenomena. Positive PV (and therefore larger stratification in the middle of the
ribbon) reduces the vertical phase speed, and negative PV (and therefore smaller
stratification) increases the vertical phase speed inside the ribbon. In the positive PV
case the wave amplitude is larger (compared to the evolution of the PV-free wave
packet in figure 7) and the wave packet decelerates. In the negative PV case the
opposite happens, the packet amplitude decreases, and the wave packet accelerates.
The wave packet leaves the PV ribbon sooner when the PV anomaly is negative
than when it is positive. The patchy contour field at the bottom in the negative PV
case (figure 8) is a consequence of the interaction between the downward reflected
wave packet and the accelerated upward propagating wave packet coming from the
top boundary. This interaction is not seen in the positive PV case because the wave
packet has been decelerated, and therefore it is delayed. In the case of larger vorticity
amplitudes there is also reflection, but it is more than an order of magnitude smaller
than the amplitude of the primary wave packet and cannot be seen in figure 8. In the
weak vorticity case (figure 7) the PV ribbon acts as a larger obstacle to the incident
wave than in the large vorticity case (figure 8). In the second case, the wave appears
to tunnel through with relatively minor effects.

A quantitative measure of this reflection, and also the transmission, of the wave
packet is provided by the average reflection and transmission coefficient ratios r̄Rη and
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Figure 9. (a) The average reflection ratio r̄Rη × 10, and (b) the average transmission ratio r̄Tη × 10,
as defined by (4.3), for the wave packet and PV ribbon described in figure 7 (with ∆$ = 0.8) and
for the initial vorticity amplitudes η printed on the plots. The window for the running time average
wt = 21.

r̄Tη . The average (normalized) reflection coefficient ratio is defined by

r̄Rη (t) =
1

η̄0

wt/2∑
t′=−wt/2

〈〈|η$ (x, z, t+ t′)| − |η0(x, z, t+ t′)|〉〉z0
, (4.3)

where η$ is the vorticity field for the case of a propagating wave packet (with initial
maximum amplitude η) in the presence of a PV ribbon with amplitude ∆$ , and η0

is the vorticity field for the case of the corresponding freely propagating wave packet
(∆$ = 0). The double average 〈〈 〉〉z0

is taken over the complete x-domain, and over
a z-interval centred at the initial depth of the wave packet (z0 ≈ −1.3) with a vertical
width of 1.2 (that is, just below the PV ribbon), while wt is the window for the running
time average, and η̄0 ≡ 〈〈η$(x,z,0)〉〉z0

is the initial average vorticity amplitude (over
the same box size) of the incident wave packet, so that r̄Rη (t ∼ 0) ∼ 1. The average

transmission coefficient ratio r̄Tη is defined in the same way but the averaging domain
is taken just above the PV ribbon (z0 ≈ 1.3).

The coefficients r̄Rη (t) and r̄Tη (t) for different values of η are shown in figure 9.
Relative reflection is small for vorticity amplitudes smaller than 0.005, it increases
for increasing vorticity amplitudes, reaching a maximum r̄Rη ≈ 0.6 for η = 0.007, and
decreases for higher amplitudes, consistent with the images displayed in figures 7
and 8 (for η = 0.02 and η = 0.4, respectively). The time dependence of r̄Rη shows
the formation and downward propagation of the reflected wave packet, which leaves
the average region after t = 90. For a positive PV anomaly (∆$ = 0.8) the time
dependence of the relative transmission ratio r̄Tη (decreasing then increasing with time)
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(a) (b) (c) (d )

Figure 10. Time evolution ((a–d ) t = 0, 9, 18, and 27 buoyancy periods) of the relative vor-
ticity η(x, z), for a horizontally and vertically confined wave packet (initial amplitude η = 0.02,
k = −l = 16, wave packet length scale L = 0.4 in both directions) in the presence of a zigzag PV
ribbon (ribbon width h = 1.5, ∆$ = 0.1, and number of contours nc = 80). Extreme values are
(ηmin, ηmax) = (∓0.019,∓0.013,∓0.012,∓0.009). Solid fill interval ∆ = (ηmax − ηmin)/9, and grid size
is 128× 128.

(a) (b) (c) (d )

Figure 11. As in figure 10 but with an initial wave amplitude η = 0.6, ∆$ = 0.8, and number of
contours nc = 4. Extreme values are (ηmin, ηmax) = (∓0.6,∓0.4,∓0.5,∓0.2).

shows clearly the retardation of the wave packet relative to the freely propagating
wave packet case. The wave packets having smaller relative reflection coefficients
(those with initial maximum vorticity amplitudes η ∈ (0.001, 0.005, 0.05, 0.1, 0.15))
are the ones having larger (in absolute terms) relative transmission coefficients,
while the wave packets with larger relative reflection coefficients (those with η ∈
(0.006, 0.007, 0.01, 0.02)) have the smallest relative transmission coefficients.

The evolution of a vertically and horizontally confined IGW packet as it encounters
a PV ribbon is illustrated in figure 10 (see Sutherland 2001 for a recent discussion
of the evolution of compact wave packets in a non-rotating fluid). In this case
the vertical component of the group velocity is positive (upwards) and the vertical
component of the phase velocity is negative (downwards). Two small-amplitude wave
packets are reflected as the primary wave packet enters and leaves the PV ribbon.
The amplitude of the refracted and reflected wave packet depends on the initial wave
packet amplitude as well as the amplitude and shape of the PV jump. For example
(see figure 11), for a larger initial wave packet amplitude and a larger zigzag PV jump
with a small number of PV contours (this implies sharp vertical density gradients)
the amplitude of the second reflected wave packet generated when the incident wave
packet leaves the PV ribbon is much larger than the amplitude of the first reflected
(not visible in the figure) and refracted wave packets. Indeed, the wave packet is
nearly completely reflected.

Finally, we remark that the φ-field may be a useful means of detecting wave packets
in general circumstances. Figure 12 shows the evolution of a wave packet similar to
that shown in the previous two figures except in the absence of a PV anomaly. Here,
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(a) (b) (c) (d )

Figure 12. Snapshots at t = 9 and 27 buoyancy periods of the relative vorticity η(x, z) (a and b)
and φ(x, z) (c and d ) for a horizontally and vertically confined wave packet having 25 times the
initial vorticity amplitude (η = 0.5) as that in figure 10 but with no PV anomaly. Extreme values are
(ηmin, ηmax) = (∓0.32,∓0.15) and (φmin, φmax) = [(−3.8, 12.5), (−1.1, 2.1)] × 10−7. Solid fill intervals
∆η = (ηmax − ηmin)/9, and ∆φ = (φmax − φmin)/9.

we also display the φ-field in figure 12(c, d ). Note that the short-wavelength patterns
in η are not present in φ, and moreover φ exhibits a coherent maximum moving with
the centre of the wave packet.

4.4. IGW generation

Internal waves may also be spontaneously generated from many initial PV distri-
butions, so long as they are not perfectly horizontal. Here we choose for simplicity
a simple horizontal PV tent ribbon with a sinusoidal perturbation in x. Initially,
the PV contours are displaced vertically by δz(x) = δz0 sin(Kx). The initial relative
vorticity η and A fields are set to zero. In the evolution of the PV distribution
(δz0 = 0.25, K = 1, h = 0.5, figure 13) the upper PV contours compress at both ridges
(x ∈ [−3π/4,−π/4]) and troughs (x ∈ [π/4, 3π/4]) but spread apart in between, while
the lower contours are modified in the opposite way. This ultimately results in a
quasi-steady state (where the only unsteadiness is due to internal waves arriving from
the boundaries, an artifact of the periodic conditions there). This PV-contour (or
Rossby) wave motion is related to the generation of upward and downward propa-
gating internal wave packets in both the vorticity and buoyancy fields (figure 14). The
time evolution of the velocity (figure 15) shows internal wave packets in the three
velocity components; here only v reaches (or approaches) a steady geostrophically
adjusted state in the PV ribbon. An initial PV jump half the size (∆$ = 0.2), and
a ribbon width twice as large (h = 1) results in smaller wave packet amplitudes
(figure 16), though the initial maximum buoyancy remains similar (∼ 2). In the case
∆$ = 0.5 the minimum Rellich’s parameter Rmin = min[R(x, z)] < 0 throughout the
simulation, and this appears to be associated with the development of convective
instabilities at much later times (145 buoyancy periods or about 3 inertial periods, see
figure 17). For smaller PV amplitudes (e.g. ∆$ = 0.2), Rmin remains positive, and the
flow remains stable for at least 250 buoyancy periods (5 inertial periods), the length
of the simulation. However, we are not aware of any theoretical reason why R < 0
may be associated with flow instability.

4.5. Linear dynamics

In this subsection we discuss the linear dynamics and compare nonlinear and linear
results for the case of the upward propagating wave packets interacting with a PV
ribbon studied in the previous sections. Linear dynamics is usually derived from the
linearization of the equations of motion when the dependent variables are written in
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Figure 14. Contours showing the generation of wave packets of relative vorticity η(x = −π, z, t)
(a, (ηmin, ηmax) = (−3.08, 3.08)) and σ(x = −π/2, z, t) (b, (σmin, σmax) = (−1.49, 2.42)). Ribbon width
h = 0.5, ∆$ = 0.5, K = 1, and δz0 = 0.25. The integration time is 25 buoyancy periods (0.5 inertial
periods, 25 × 103 time steps with ∆t = 0.001) and the grid size is 16 × 256. The initial profiles of
$(z), σ(z), and −Z(z) are shown on the right.

terms of a mean quantity and a perturbation. Thus, for example, the linear version of
the conservation of mass density Ż = 0 (recall that Z(x, z, t) = z +Z(x, z, t)) is not
Zt = 0 which would imply Zt = 0, but Zt + w = 0 since u · ∇(z +Z) is replaced by
w. The solution to the linear equations therefore provides a good approximation to
the solution of the full nonlinear equations when the perturbations relative to a given
mean distribution remain small. The linear equations for the perturbed primitive
quantities are therefore

Zt = −w, vt = −fu, (4.4a, b)

ηt = fvz −N2Zx, ux + wz = 0. (4.4c, d)

Now we deal with the linear version of the equations solved in this work and its
relation to the above system. The approach described in this work is based on the
conservation of PV ($̇ = 0), a nonlinear function of the absolute vorticity and the
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(a) (b) (c)

Figure 15. As in figure 14 but for u (a, (umin, umax) = (−0.27, 0.27)),
v (b, (vmin, vmax) = (−0.065, 0.065)), and w (c, (wmin, wmax) = (−0.051, 0.065)).
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Figure 16. As in figure 14 but for a PV ribbon width h = 1, ∆$ = 0.2, and δz0 = 0.1. Vorticity
(a, (ηmin, ηmax) = (−0.62, 0.62)) and σ (b, (σmin, σmax) = (−0.53, 1.94)).

density gradient that is materially conserved if the flow obeys the full nonlinear
equations. However, in general and strictly speaking, $̇ 6= 0 when the flow u obeys
the linear equations (4.4). Note that in the linear approach a flow satisfying the linear
equations (4.4) does not need to satisfy the nonlinear equations (i.e. the advective
terms need not necessarily be zero) and solutions different from plane waves are
therefore also possible in the linear dynamics described by (4.4). Since our approach
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Figure 17. As in figure 13 but showing the PV contours at (a) t = 50, (b) 100, (c) 140
and (d ) 145 buoyancy periods.

basically uses the conservation of PV as an independent equation it seems that it is
not possible to obtain a set of linear equations fully consistent with (4.4) including
the linear conservation of PV ($t = 0). There are several alternative solutions to
circumvent this problem.

A possible solution is to define a new PV perturbation as a linear function of the
displacements

$l ≡ Xx +Zz = C = ∇2φ, (4.5)

such that the total PV is Π = 1 + $ = 1 + $l + Jxz(X,Z). In the linear dynamics
given by (4.4) the equations equivalent to (2.20) are

ηt = (f2 −N2)φxz −N2ϕxx − f2ϕzz, (4.6a)

At = η, $l
t = 0, $l = ∇2φ. (4.6b, c, d )

Thus, the linear PV $l is steady and PV contour advection is therefore not needed.
Since φ is also steady, and if initially φx = 0 (that is, if $l

x = 0), the equations (4.6)
reduce to

ηt = −N2ϕxx − f2ϕzz, At = η, (4.7a, b)

which imply

∇2ϕtt +N2ϕxx + f2ϕzz = 0. (4.8)

A different possibility, though obviously not fully consistent with (4.4), is to de-
compose the PV anomaly

$(x, z, t) = $◦(z) + $ ′(x, z, t) (4.9)

into a z-dependent steady vertical profile $◦(z) corresponding to the initial PV
distribution $(z, 0) (this can be done in those cases where the initial PV distribution
is independent of x) and a perturbation PV $ ′(x, z, t) such that $ ′(x, z, 0) = 0. Thus
the equation for the rate of change of PV may be linearized, in a similar way to the
previous linearization of ρ̇ = 0 in (4.4) so that (4.6c,d) are replaced by

$ ′t = −w$◦z , $ ′ = ∇2φ. (4.10a, b)

Another option related to the above equations, and the one we have adopted in
our comparison between linear and nonlinear dynamics because it fits better in
our approach of using a materially conserved quantity, is to linearize the final
equations (2.20) but keeping the nonlinear conservation of the linear PV, so that the
final (quasi-)linear equations are

ηt = (f2 −N2)φxz −N2ϕxx − f2ϕzz, (4.11a)

At = η, $̇l = 0, $l = ∇2φ. (4.11b, c, d )
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A comparison of the linear and nonlinear dynamics is presented in figure 18 for the
case of an upward propagating wave packet interacting with a horizontal PV ribbon.
In the case of no PV anomaly the free propagation and spreading of the wave packet
is very similar for both the linear dynamics (figure 18a) and nonlinear dynamics
(figure 18d ). The maximum differences between both fields (figure 18g) are very small
(0.005) and the largest difference values seem to be related to differences due to the
initialization. For $ 6= 0 the results are different however. In the case $ > 0, the
linear behaviour of the wave packet (figure 18b) exhibits the typical retardation effect
inside the PV ribbon also observed in the previous subsections for the nonlinear case;
however the nonlinear dynamics significatively increases this retardation (figure 18e)
so that the wave packet tends to remain longer inside the PV ribbon. The difference
between both fields (figure 18h) shows this increased retardation effect, with maximum
values of 0.6 along a horizontal layer inside the PV ribbon. In the case $ < 0 the
nonlinear dynamics tends instead to accelerate the wave packet upwards more rapidly
than the linear dynamics. The linear behaviour of the wave packet (figure 18c) also
exhibits the typical acceleration effect inside the PV ribbon already observed in
the previous subsections for the nonlinear case; however, the nonlinear dynamics
significatively increases this acceleration (figure 18f ) so that the wave packet crosses
the PV ribbon faster. The difference between both fields (figure 18i ) shows again this
increased acceleration effect, with maximum values of 0.5 in a layer more vertically
oriented than in the linear case located above the PV ribbon. Thus, we may conclude
that though the linear dynamics reproduces qualitatively both the retardation and
acceleration of a wave packet through a PV ribbon, it fails to capture these effects
quantitatively, both in terms of wave phases and amplitudes.

5. The three-dimensional generalization
In this section we introduce the three-dimensional generalization of the two-

dimensional theory given in § 2. Let ∇, in this section only, denote the three-
dimensional gradient operator. To begin, note that the vector Ap ≡ ∇2

hϕp is just
the plane component of the three-dimensional vector

A = (A,B,C) ≡ ∇2ϕ = (∇2ϕ,∇2ψ,∇2φ) = ωf−1 + ∇Z. (5.1)

This vector therefore combines the kinematic and thermodynamic properties of the
fluid. Taking the divergence of (5.1), and using the identity ∇2ϕ = ∇(∇·ϕ)−∇×∇× ϕ,
we obtain

Z = ∇ · ϕ, u = −f∇× ϕ, (5.2a, b)

so that −fϕ is the velocity potential.
The rate of change of A is

Ȧ = ω̇f−1 + ∇̇Z
= (ωaf−1 − ∇Z) · ∇u+ ∇Ż − ∇Z× ω − f−1N2k × ∇Z
= f−1ω · ∇u− ∇u · ∇Z− k × (ω + f−1N2∇Z). (5.3)

Note that Ż = −w. Using (5.3) the Cartesian components of Ȧ can be written as

Ȧ = η + f−1N2Zy − f−1Jxz(u, v) + f−1Jxy(u, w)− Jxz(w,Z)− Jxy(v,Z), (5.4a)

Ḃ = −ξ − f−1N2Zx − f−1Jyz(u, v) + f−1Jxy(v, w) + Jxy(u,Z)− Jyz(w,Z), (5.4b)
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Figure 18. Relative vorticity η(z, t), showing the evolution of a wave packet (initial amplitude
η = 0.4 and length scale L = 0.4) for the linear case (ηl , parts (a), (b), and (c)), nonlinear case
(η, parts (d ), (e), and (f )), and vorticity difference (η − ηl , parts (g), (h), and (i )) in the presence
of a tent horizontal PV ribbon of width h = 1.5. Cases (a), (d ), and (g) show the evolution of a
free wave packet (no PV anomaly), while ∆$ = 0.8 for cases (b), (e), and (h), and ∆$ = −0.8 for
cases (c), (f ), and (i ). Solid fill interval ∆ = (ηmax − ηmin)/5. Minimum and maximum values
are (ηmin, ηmax) = [(a), (−0.40, 0.40); (b), (−0.40, 0.41); (c), (−0.40, 0.40); (d), (−0.40, 0.40); (e), (−0.41,
0.43); (f), (−0.40, 0.40); (g), (−0.005, 0.007); (h), (−0.63, 0.57); (i), (−0.52, 0.51)]. Integration time is 150
buoyancy periods (3 inertial periods). The grid size is 16× 256.

Ċ = −f−1Jxz(w, v) + f−1Jyz(w, u) + Jyz(v,Z) + Jxz(u,Z), (5.4c)

and it is easily demonstrated that for plane motion (∂/∂y = 0) the plane compo-
nents of Ȧ (Ȧ and Ċ) correspond to (2.16a) and (2.16b), respectively, while the
y-component (Ḃ) becomes the vorticity equation (2.4) (the streamfunction here ψ
corresponds to −ψf−1 in the previous sections).

The potential vorticity density (anomaly) is

$ = Π − 1 = ∇2φ+ f−1Jxz(v,Z)− f−1Jyz(u,Z)− f−1Jxy(w,Z), (5.5)

which in the two-dimensional case reduces to (2.18). Thus, the system of equations
consists of the prognostic equations for Ȧ, Ḃ, and PV conservation ($̇ = 0), and
a nonlinear diagnostic equation for the potential φ coming from the definition of
PV. This diagnostic equation appears to be the generalization of the Monge–Ampère
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equation for φ found in the two-dimensional case since it can be written similarly:

E[φzz(φxx +φyy)−φ2
xz −φ2

yz] +A(φxx +φyy) + 2Bφxz + 2B′φyz +Cφzz +D = 0, (5.6)

with coefficients

A = 1 +Θz, B = ∇2ϕ/2−Θx, B′ = ∇2ψ/2−Θy, (5.7a, b, c)

C = 1−Θz, D = Θx∇2ϕ+Θy∇2ψ − |∇Θ|2 − $, E = 1, (5.7d, e, f )

where Θ ≡ ϕx +ψy . If we generalize Rellich’s parameter as R ≡ AC −B2−B′2−ED,
we have

[E(φxx + φyy) + C](Eφzz + A)− (Eφxz − B)2 − (Eφyz − B′)2 > 0 (5.8)

as the condition for ellipticity. Thus, in this case, [E(φxx + φyy) + C](Eφzz + A) > 0,
and the positivity of both bracketed terms implies

1 + φxx + φyy − ϕxz − ϕyz > 0⇒ f−1ζ + 1 > 0,

1 + (ϕx + ψy + φz)z > 0⇒Zz + 1 > 0,

i.e. inertial and static stability. Moreover, note that we can also write

R = 1 + $ − (A2 +B2)/4, (5.9)

which appears to be a simple generalization of (2.23). This similarity between the
three-dimensional and two-dimensional equations suggests that their solution prop-
erties may be similar. There are thus compelling reasons to believe that the two-
dimensional solution procedure discussed in this paper can be generalized readily to
three dimensions. This work is currently underway.

6. Concluding remarks
In this work we have introduced an explicit potential-vorticity-conserving approach

to modelling nonlinear internal gravity waves in geophysical fluids. The method in-
tegrates three prognostic equations and solves one diagnostic equation for the three
potentials ϕ = (ϕ, ψ, φ) and potential vorticity density $ . Numerical simulations have
been presented for the two-dimensional case (in the x, z plane), within a doubly
periodic domain, and using a hybrid contour-advection, pseudo-spectral algorithm.
Potential vorticity is held in a contour representation and its conservation equa-
tion is integrated by tracking material points along PV contours explicitly. Because
conservation of PV is explicit, the approach we have introduced is an appropriate,
potentially powerful tool to analyse a great number of complex IGW processes in
terms of potential vorticity.

Some illustrative, idealized applications of the theory and the numerical method
have been provided. These examples include the simulation of the plane waves in the
presence of PV anomalies, reflection and refraction phenomena associated with the
interaction between IGW packets and various PV distributions, and the production of
IGW packets by PV anomalies and the subsequent geostrophic adjustment of the flow.
The theoretical basis of the generalization of this approach to the three-dimensional
case has also been described.

The main purpose of this study has been to introduce a new approach to modelling
nonlinear IGWs and, in particular, to unravelling the role played by PV. We have
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not attempted to be exhaustive here, but what we have shown is that there are
many aspects of the interaction between IGWs and PV that deserve careful exami-
nation. These include IGW instability processes (which requires a three-dimensional
numerical code), wave propagation in shear flows, wave–wave interactions (including
inertial waves), the dependence on rotation and stratification (on the ratio of f/N
in particular), as well as the dissipation and production of PV in convective IGW
processes. From a theoretical point of view, there remains a need to understand the
connection between Rellich’s parameter R and IGW instabilities. We hope to report
on these topics in a future work.

We would like to thank Dr Oliver Bühler for his help with wave packet initialization.
Support for this research has come from the UK National Environment Research
Council (grant number GR3/11899).
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Viúdez, A. 2001 The relation between Beltrami’s material vorticity and Rossby–Ertel’s potential
vorticity. J. Atmos. Sci. 58, 2509–2517.

Winters, K. B. & D’Asaro, E. A. 1989 Two-dimensional instability of finite amplitude internal
gravity wave packets near a critical level. J. Geophys. Res. 94, 12709–12719.

Winters, K. B. & D’Asaro, E. A. 1994 Three-dimensional wave instability near a critical level.
J. Fluid Mech. 272, 255–284.


